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Abstract, A model for the energy-loss function of 1 medium that is based on optical data
(~zero momentum transfer) and a quadratic extension into the momentum-transfer plane
is used to evaluate the stopping power of ihe medium for protons and antiprotons. Energies
less than ~40 MeV are considered for which radiative energy losses and density-effect
corrections are negligibte. ‘Higher-order’ corrections to the stopping power proportional to
the incident particle charge to the third power. Barkas effect, and to the fourth power, Bloch
correction, are included. Calculations are presented for aluminum, carbon, copper and
polystyrene. Comparisons with experimental data indicate that the optical-data model, plus
higher-order corrections, provides an excellent description of energy loss for proton energies
from ~100 keV to several tens of MeV.

1. Introduction

The rate of energy loss by charged particles traversing matter, that is the stopping power
of matter for charged particles, is a subject of longstanding experimental and theoretical
interest. Theoretical descriptions for heavy particles usually appeal to the Bethe theory
of stopping power as outlined in [1] and [2]. Predictions from this theory for non-
relativistic particles require a material-dependent parameter, the mean excitation
energy, which is usually extracted from experimental stopping-power data, and shell
corrections supplied by supplementary thecretical calculations. If the response of the
given medium was known for all possible energy and momentum transfers {or the
generalized oscillator strength), the stopping power could be calculated without the
need for additional information. Since this comprehensive information is not available,
models based on optical data (zero momentum transfer) for the medium and reasonable
assumptions about the response to momentum transfers can be used as approximations
for evaluating stopping power. One such model is employed in this paper to obtain the
stopping powers of several solids. The advantage of this procedure, as discussed in detail
below, is that the mean excitation energy need not be known explicitly and the shell
corrections are ‘built into’ the model.

The “optical-data’ model introduced previously (3, 4] for predicting electron and
positron energy loss and inelastic mean free path is applied to calculate the stopping
power of matter for protons and antiprotons. The basis of the model is an expression for
the energy-loss function which assumes a simple quadratic dependence on momentum
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Figure 1, Shape of the Gos in the g = 0 limit (opti- Figure 2. Behaviour of the optical-data model
cal oscillator strength) based on optical data for GOs as a function of momentum transfer for small
carbon, energy transfers.

transfer g. For simplicity, we work in the system of atomic units where Ai=e=m = 1,
More widely recognized, conventional units will be used to describe results. For an
energy transfer w, the energy-loss function, or dielectric response function, Im[—1/
£(g, w))]. is connected with the optical energy-loss function (g = 0), and hence exper-
imental optical data, through

o Im[=1/¢(q, ©)] = f " dw’ o Im[~1/6(0, o)) — (" + ¢4/2)]. )
N

Note that @ Im[{—1/e(q, @})] is proportional to the generalized oscillator strength
(Gos) for the medium. A general review of the GOs and its importance has been provided
by Inokuti and co-workers [1, 2]. The energy-loss sum rule, or the oscillator-strength
sum rule, is

t H

f do wlm[-1/e(g, 0)] =5 Q3 ' (2)
0

where Qg = dxngZ,, and ny is the density of atoms or molecules in the medium with Z,
electrons per atom or molecule. This sum rule is obeyed for all g if the input optical data
Im[-1/&(0, w)] obey equation (2).

For comparison with Goss from atomic models discussed in[1], we illustrate the form
of equation {1} using optical data on carbon [5]. Figure 1 gives @ times the optical energy
loss function for carbon based on the data in [5]. The main features in this figure are a
broad maximum at @ ~ 0.86 (or Aw =~ 23 eV) and the onset of K-shell ionization at
w==10.4 {hw = 282 eV). Obviously this information will be reproduced by equation (1)
in the limit ¢ — 0. Figures 2 and 3 show the shape of the Gos predicted from equation 1
as a function of momentum transfer for several values of energy transfer. These figures
show the emergence of the *Bethe ridge’, i.e., the concentration of the Gos around the
line w = g%/2, for large g and w. For large enough energy transfer, K-shell ionization
begins to contribute to the Gos as shown in figure 3. The Gos approximated by equation
(1) thus has the expected limiting form for g — 0 as well as for large g and w, and, as
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importantly since stopping power is evaluated by integration over the Gos, obeys the
sum-rule constraint of equation (2) for any value of g.

In this paper we start by describing the lowest-order ( proportional to the square of
the incident-particle charge) contribution to the stopping power of the medium using
the ansatz for the cos described by equation (1). Our emphasis is on energies up to
several tens of MeV so that radiative energy losses and density-effect corrections are
negligible. ‘Higher-order’ corrections, proportional to the third and fourth powers of
the incident particle charge. are important for these energies and will be incorporated.
These results can be related to the usuval Bethe theory of stopping power as reviewed in
[1]. [2] and [6]. Results for the stopping powers for aluminum, carbon, copper and
polystyrene will be presented and comparisons made with experimental data.

2. The optical-data model stopping power

The stopping power of a medium described by the energy-loss function Im{~1/¢(q, )]
for a proton (Z, = 1) or antiproton (Z, = —1) of speed v is given by [7, §]

.. 273 dg
S(v?) =Ev—éfdwm[?lm[—1/s(q, w)} 3)
The limits on the g integration are w/v < g < ; and w varies from zero to w = 20, the
maximum energy transfer to a free electron in the medium. Equations (1) and (3) give

S(o?) = % j " 4o o Tm[=1/£(0, 0| H(e/0?) )

where ‘
H{a) = In[(1 — a + 5)/a] (5)

and s = (1 — 2a)"2. In the high-speed, but non-relativistic, limit we obtain the usual
Bethe-theory result for Z, = = 1:
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S(v) = (@2/v?) In(20*/]) (©)

where f is the mean excitation energy defined by
o) =
lnIE-—zf do' @' In @' Im[—1/(0, ). 7
L2y Jy

An important feature of the expression for § in equation (4) is that as one goes to
lower values of v, and thus lower values of maximum energy transfer, the reduction and
eventual elimination of inner-shell contributions to the stopping process is incorporated
automatically. That is, ‘shell corrections’, which must be provided by separate cal-
culations in the usual Bethe-theory approach, are incorporated in the expression for 8.
In the standard notation, shell corrections may be extracted through [9]

C/Z, =In(20*/1) = Ly 8
where
L, = v285(v?)/Q5Z7. (9)

Shell corrections determined in this manner will be compared with other results in
Section 4.

3. Higher-order corrections

To the basic stopping power expression, equation (4), we add corrections of higher
power, namely, the Barkas-effect correction, proportional to Z7 [10], and the Bloch
correction [6, 11], proportional to Z$. The total stopping power is written as

S=(Z3Q23/v* )Ly + Z,L, + L;) (10}

where L is to be evaluated from the optical-data model through equation (9), L, is the
Barkas-effect correction, and L, is the Bloch correction. These correction terms are
discussed extensively elsewhere, as reviewed in [6]. e.g.; we present the terms in a form
suitable for numerical evaluation.

For y* = Z3/v? < 1, L, is approximated very closely by [12]

L, = — y2[1.20206 — y?(1.042 — 0.8549y* + 0.343y%)]. (11)
To obtain L, start with [10]
Li(w) = (@/v*)(§) (12)

where £ = aw/v, with ¢ a minimum impact parameter to be discussed later, and I{(£) is
a tabulated function [13]. For easy numerical calculation this function may be approxi-
mated by:

(32/2) In(1/E) —2.417 = 2= E*[(In £)* + 1.14 In £ - 0.33] £<0.25
1(8) = {(—0.5986 + 0.9962/& — 0.1233/53)5~%* 0.25=E<«<]
9.052 exp(—3.72&+0.217£&%) 1=<E=2,

The analytic form for small £ was derived in {14] and reproduces tabulated values to
within 1% for £=0.2 increasing to 1.7% at £ = 0.25. The other terms were found
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by fitting the tabulated values—to within 2% for 0.25 < £ <1 and within 0.2% for
1=sE=<2.

Equation (12) represents a ‘distant-collision’ (small ¢) contribution to stopping
power 50 we take a distribution of ws determined by the optical energy-loss function
through

G(w) = o Im{~1/£(0, »)] { j " do o Im[~1/£(0, w)]}_l. (14)
0

Thus

L = f ™ do G(o)L, (@) (15)
0

with @, = 202 In[10] a statistical model for G(e) was used for the target atoms leading
10

L, = F(b/x'?)/Z}?x3? (16)

where x = v¥/Z,, b = nyZ4® with 5 a parameter of order 1, and y a constant from the
statistical model; Fis a tabulated function [13]. In practice, in relating Bethe theory plus
correction terms to careful experimental stopping power measurements, b and y are
taken as fitting parameters (see, e.g., [15-17] and references therein). An example of
this usage will be discussed in the next section.

4. Calculations and comparisons

In this section we present the results for stopping power, and related quantities, for
protons in several materials. Comparisons will be made with experimental data and
other theoretical results. Aluminum wiil be emphasized as a test case for the model.

4.1, Aluminum

Aluminum is considered first because of the existence of excellent stopping power data
[16,17] and optical data. A carefully tested, composite set of optical data for Al
is available up to #Aw = 10%eV [18,19]. For higher photon emergies we take
Im[—1/e(0, )] &« w™*. The set of data included in the program to calculate S yields
from the sumrule, equation (2), a value of Q} which is0.1% less than the expected value
1.4569 and a value of 1n /(e V) = 5.0948 [ = I(eV) = 163.2] which is ~0.3% less than
In(165.7) given in [18].

For the stopping power calculations we relate the proton’s speed to its Kinetic
energy E through v? = ¢?[1 — (1 + £/Mc*)~?], where M is the proton mass, or non-
relativistically v? (au) = E (keV)/25. Two choices for the minimum impact parameter
a were used to calculate L;: (i) a = 1/V 2w suggested by Jackson and McCarthy [20],
and (ii) @ = 1/1.781v as suggested by Lindhard {21].
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impact parameter a; L, is the Bloch correction.

The calculations for Al are summarized in figure 4 as functions of proton energy. Ly,
determined from equations (4), (5) and (9) with the optical data for aluminum, is
compared with the simple, high-speed result In(2v?/1). The predictions for L, differ by
a factor of ~1.5-2 over the energy range shown as expected from ecarlier discussions
[21]. The Bloch term is negative and is displayed as =L, in the figure. At the lower
energies, <100 keV, the ‘correction’ terms begin to dominate the behaviour of the
stopping power and the validity of this approach becomes questionable.

L, is shown in more detail in figure 5 where the experimental value determined from
stopping power data (broken curve with error bars) [22] is included. The L.s calculated
with the optical data are indicated by the choice of a. The curve labelled ‘ARB’ was
determined from equation (16) using parameter values fixed by fits to stopping power
data [23]. The curve ‘JM’ is from [20] where @ = 1/V2w was taken and a statistical
model used to arrive at an essentially parameter-free form of equation (16). This result
agrees quite well with our opticai-data result using the same choice for a. Since our
caleulated L, with a = 1/1.781v agrees reasonably well with the experimental results
and with L, from fits to experimental stopping-power data, particularly at the lower
energies where it contributes more significantly to the total stopping power, we will
adopt this value of a for calculations on other materials.

A direct measure of the Barkas-effect correction is found by measuring the difference
in energy between a proton (p) and an antiproton (), with the same initial energies,
after transmission through a given thickness of material ¢. This energy difference
AE=FE; — E; is proportional to 2Lyt for small r. Recent experiments give AE =
194 £ 45 keVfor 5.9 MeV particles after 117 gm of aluminum plus 107 um of ‘aluminum
equivalent’ material (T, plastics, and gases) [24].

Infigure 6 are shown the energy of a proton, with initial energy 5.9 MeV, asafunction
of path length in Al; AE is calculated with @ = 1/1.781v, and with L, from equation (16)
forb = 1.3, x = 1.328[23]. The experimental result [24], AE (keV) = 194 = 45, appears
consistent with either method for calculating L, assuming all 224 um of the material is
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energy difference AE as functions of path length
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L. Experimental point from [24]. Deviation of

num for protons calculated from the optical-data
model (heavy, full curve) with a fit to collected
experimental data (broken curve). The light, full

path length from penetration depth is given by curve is from an electron-gas model (for con-
Asfs. duction electrons only); the chain curve is from
: the optical-data model without higher-order cor-

rections.

aluminum. The difference in the calculated A Es at this pathlength is ~30%. The choice
a=1/V2w gives AE = 102 keV for 224 um of aluminum, well below the experimental
result. We note that measurements of AE, and hence L, in thin films of silicon are
available for energies from 500 keV to 3 MeV [25]. _

As a measure of the deviation of the pathlength s travelled by a proton, from the
depth of penetration (or target thickness) due to multiple scattering, the quantity [9]

As={s—1),= J’ "1 = cos 0), ds’ a7
U]

was calculated using a simple theory of multiple scattering {26] for a protoa of initial
energy 5.9 MeV in aluminum. Shown in figure 6 as As/s, the multiple scattering cal-
culations indicate a correction <1% and thus do not influence the theory-experiment
comparison. For small path lengths, As/s is approximately the same as {(8%}/4 used for
path length corrections in thin foils [17]; for s = 160 um, {6?)/4 underestimates As/s by
about a factor of two.

The mass stopping power, $* = §/p, of aluminum, calculated with the optical data
model plus the L,(a = 1/1.781v) and L, correction terms, is shown as the heavy fuli
curve in figure 7. The change in the slope of this curve in the region 150200 keV is due
to the onset of contributions to the stopping from L-shell electrons. The broken curve
represents a fit to a large amount of experimental data as reported in [27]. Agreement
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Table 1. Stopping power of aluminum for protons (in keV em*mg™').

This Aarhus MNarat Risé

E{MeV) work f22] [16] f28]

0.8 201.5 196.6

1 176.7 1721

1.2 157.6 1533.6

1.4 142.5 139.0

1.6 130.2 127.3

1.8 120.0 117.6

2 111.4 109.5 . :

3 52.98 §2.39 82.26 83.23

4 67.51 66.96 67.00 67.72

5 57.40 56.88 56.94 57.57

6 50.16 49.70 49,74 50.28

7 44.69 44,31 44.76

B 40.39 40.05 40.44

9 36.91 36.60 36.96
10 34.04 (33.76) 34.09
12 2055 . (29.32) 29.60
14 26.20 (26.01) 26.26
15 23.60 {23.43) 23.67
18

213 (21.37) 21.59

1 Table 5, ‘smoothed data’

for E > 100 keV is quite good overall; the curves differ by 4-6% up to ~300 keV, within
2% up 10 4000 keV, and then ~4% at 10 MeV. At the lower energies the differences are
considerably smaller than the spread in the data sets shown in [27]. For energies less
than or equal to 100 keV the sizes of the correction terms become comparable with L
{sce figure 4} so this calculation is not expected to be meaningful at low energies.

The chain curveinfigure 7is §' calculated using L,only { nohigher-order corrections).
Comparison with the heavy, full curve illustrates the increasingly important role of the
higher-order terms at lower energies. The light full curve is §' calculated using an
electron-gas model [7] to describe the conduction electrons (only) in aluminum. The
peak of this curve and the L-only result (chain curve) occur at about the same energy
and differ by ~15% at the peaks. These curves come together on the high-energy side
of the peak, but separate at higher energies as the L-shell electrons begin to contribute
to the optical-model calculation at ~140 keV.

A more detailed comparison can be made with careful measurements (stated errors
of ~1/2%) collected in table 1 from [16] (*Nara’), [22] (‘Aarhus’), and [28] (‘Risd’). As
discussed in [16], the differences in the Nara and Aarhus data are within the statistical
uncertainty in the overlapping energy region while the Risd data are greater than the
Nara data by ~1%. Our calculations fall in between the latter two sets for E = 3 MeV,
being from ~0.7 to 0.9% greater than the Nara data and from ~0.2 to 0.4% less than
the Risé values. Differences of ~2-3% between model calculations and data are found
at energies <<3 MeV. These comparisons indicate the validity and usefuiness of this
model for predicting stopping powers of materials for which optical data are avalable
over a wide range of photon energies.

As mentioned earlier, evaluation of L, from the optical data automatically includes
the ‘shell corrections’. These are evaluated from equation (8) and shown by the full line



Optical-data model for proton stopping 2749

04 T T T T T T TTT
ALUMINUM

[ ) ! t |
05 1.0 2.0 5.0 10.0
€ (MaV)

Q

Fipure 8. Comparison of the shell-correction term
extracted from the optical-data model with the
Bonderup statistical model result (broken curve)

T 1T T T 11117 T TTTTg
CARBON =

o
| II|IIH

T I TEm
Lt o Lol

| II]IH||
Lo 1iiuml

0 bisnt Lo byl pliets
2 s 107 2 5 08 2 s 1%
E {ka\)
Figure 9. Comparison of L, for carbon with the
‘Bethe-logarithm’ term. L, is the Barkas-effect
correction and L, the Bloch correction,

and with that determined from experimental data.

in figure 8. The bump at ~3 MeV is due to the K-shell in Al which does not contribute
tostopping for £ < 2.8 MeV. The full line marked ‘EXP’ was determined from stopping-
power data [22] and the broken curve is from Bonderup's theoretical model [29]. In
the context of shell-correction studies, the agreement shown in this figure should be
considered to be quite good. -

4.2. Carbon

The optical data for arc-evaporated carbon films [5] were used to calculate stopping
power using the optical-data model plus correction terms as outlined above. The sum
rule for the data in the program gave a value of Q7 about 1/3% larger than the predicted
value 1.0631, If values of the optical energy-loss function are reduced by 1% above the
K edge (fiw = 282 eV), exact agreement is obtained for the sum rule, and the mean
excitation energy is [ = 82.6 eV. The results are shown in figure 9 with e = 1/1.781v in
L, and In(20%/1), broken curve, for comparison with L, The total mass stopping power
is shown in figure 10 with the fitted curve (broken curve) from [27]. These two curves
agree to within ~1% for E > 1 MeV; differences increase 10 ~15% near the peak at
80 keV. The chain curve is calculated with Lyonly and illustrates, once more, the strong
influence of the higher-order corrections at the lower energies. In figure 11 we compare
the mode! shell corrections for C and Al with the semi-empirical shell corrections
suggested in [30].

4.3. Polystyrene

Optical properties of polystyrene over a large range of photon energies [31] have been
employed to evaluate stopping powers. The optical data yieid excellent agreement for
the sum rule and a value of /= 68.5 eV which differs insignificantly from the value
predicted earlier using essentially the same optical data [32].
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The mass stopping power of polystyrene for protons calculated from the optical-data
model plus higher-order corrections is given by the full curve in figure 12, The higher-
order correction terms account for ~25% of the total stopping power at 100 keV and
~40% at 60 keV. For comparison, the broken curve is from a tabulation [33] based, to
some extent, on experimental data. Our results are ~20% larger in the peak region,
cross at ~250 keV, and are approximately less than 2% less than those tabulated values
for £ > 300 keV. Most of the differences at the higher energies can be accounted for by
differences in the fvalues (61.4 eV for the tables and 68.5 eV for the optical-data model)
through AS’'/S’" = [In(68.5/61.4)}/In(20%/I) ~ 0.02 at 10 MeV.

Measurements of mass stopping of polystyrenc for protons are available for
2MeV < E < 6MeV [34, 35]. The inset in figure 12 gives the ratios of the calculated
values to the experimental data accounting for the uncertainties in the data. Excluding
the value at 4351 keV, the model seems to predict values ~1% greater than the exper-
imental data over this energy range; this is consistent with the difference between
f=71.1 = 1.8 eV derived from the measured energy loss, and the value of f determined
from the optical data.

In figure 13 we compare the sheli-correction terms extracted from the optical-data
model, equation (8), for carbon and polystyrene. The differences here reflect the
different distributions of optical oscillator strength, defined by equation (14), for these
two materials. For carbon, half the optical oscillator strength lies below 47 eV, while for
polystyrene the optical oscillator strength is more concentrated at lower energies, with
half the strength beiow 36 eV.

4.4, Copper

Optical data for several materials are compiled in a DESY report {36], These data have
not been subjected to the rigorous re-analysis applied to those for aluminum [18]. The
data for copper from these tables, plus extension to higher energies assuming
Im[-1/£(0, w)] < w™*, give a sum-rule value for #Q2/2 about 2% too small and
I=312eV, somewhat lower than generally accepted values [16, 30].
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As an approximate correction. the values of Im(—1/¢) for 4w = 1000 eV (onset of
L-shell contributions) were increased by ~8% to give the expected value
7Q3%/2 =7.194au and [ =326 eV, a more acceptable result. Mass stopping powers
calculated with these modified data are represented by the full line in figure 14. The
broken curve is from a fit to a wide range of experimental data [27]. At the lower energies
the calculations go from ~27% below the fit curve at 100keV, to ~6% above it at
~500keV. For £ > 1 MeV the two results agree to within 2%. The shell correction for
copper extracted from the optical-data model is shown by the full curve in figure 15; the
onsets of L- and K-shell electron contributions to L, are indicated for reference.

A more detailed comparison is given in table 2. For the lower-energy set of data, left
column, differences range from ~4% at 1.2 MeV,0.6% at2 MeV,t0 1.8% at 2.8 MeV.
In the higher-energy range, right side column, our resuits are less than 3% greater than
the Nara data and less than 1.6% greater than the Risd data. Above 12 MeV our
calculations agree with both data sets to within 150, Even with the ad hoc modification
of the copper optical data, reasonable agreement between the calculations and data is
found for E > 200 keV.

5. Summary

An optical-data mode] for evaluation of stopping powers of matter for protons and
antiprotons was described and validated for the well-studied case of aluminum. The
results and comparisons described for four materials indicate the model should work
well overall for energies =100 keV when sufficient optical data are available; L, for
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Figure 14. Stopping power of copper for protons Figure 15. Shell-correction term for copper from
from the optical-data model, fullcurve, compared the optical-data model, full curve, compared with
with a fit to experimental data [27]. recommended form [30]. The labelled marks

show the energies at which the L-shell and K-shetl
electrons begin to contribute to L.

Table 2. Stopping power of copper for protons (in keV cm? mg™").

This Aarhus This Nara¥ Risd

E(MeV) work [22] E(MeV) work [16] [28]
1.2 111.0 106.0 3 62.74 61.27 62.43
1.4 100.8 97.69 4 52.31 50.87 51.65
1.6 92.39 790.46 5 45.09 43,84 44.40
1.8 85.39 84.41 6 39.76 . 38,70 39.14
2.0 79.78 79.29 7 35.65 34.78 k=R
22 75,39 ..74.80 g8 32.38 31.66 319
2.4 71.57 70.87 9 20.72 29.10 20,32
2.6 68.35 __67.38 10 2749  (21.15) 26.98
2.8 65.41 64,28 12

23.99 (23.63)  23.76

¥ Table 6, ‘smoothed data

protons up to 10 MeV requires optical data up to 5440 V. While comparisons of the
model predictions with very accurate experimental data are quite reasonable, it might
be useful to explore the origins of remaining, small, systematic differences. The effective
charge of the proton was assumed to be equal to one, in accord with current assessments
[37]. The minimum impact parameter for calculating L, was chosen principally for prag-
matic reasons; clearly, more theoretical study of the Barkas-effect correction is needed.

A nice feature of the optical-data model is that shell corrections are included auto-
matically while in Bethe theory they must be provided by separate calculations. Shell
corrections extracted from the model showed reasonably good agreement with other
information.
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